
1

Intro to Game Design: Coursework - Documentation
Lyall Campbell

S1429996

2

Contents
Synopsis .. 2

Gameplay and Story .. 3

Wake Up Call (Intro Scene) ... 3

Sleep Pod Room .. 3

In The Open (Exploration) ... 3

The Fall (Level Ending) .. 4

Mechanics ... 4

Player .. 4

Heads-Up Display (HUD) ... 4

Low Gravity & Jumping ... 6

Interaction ... 7

Construction .. 8

Terrain ... 8

Texturing ... 11

Fog & Skybox ... 15

Detail Objects .. 16

Rocks & Cliffs ... 16

Oxygen Container.. 18

Crates .. 19

Grating .. 19

Light Poles ... 19

Communication Towers .. 20

Bridge .. 21

Space Buildings ... 21

Structure ... 21

Interior .. 24

Acknowledgements ... 29

Synopsis
This game follows the journey of a worker of a space exploration team, who is abruptly awoken on a
large island on a foreign planet with no other signs of life around. With no immediate
communication with other life, the character must discover and explore what happened to the other
workers whilst also taking into consideration that there is no natural oxygen and oxygen supplies are
finite. The character later meets an exploration assistant robot which must assist the character on
the journey and discoveries on the island.

3

Gameplay and Story
Wake Up Call (Intro Scene)
The introduction to the game and the island should be one of the most important parts of the game.
The player and the character must be on an equal level in terms of whereabouts and situation since
this is a game that revolves around mystery.

Sleep Pod Room
The game begins with a black screen on the screen for 5 seconds before being abruptly removed,
revealing what should be the sleep pod room to the player.

This room is in one of the wings of one of the space buildings situated in an isolated rocky area of
the island. The entire building contains no windows therefore this room also contains no windows in
order to preserve the mystery of what is outside to the player. This room, along with the entire
building, uses the same clean white coloured structure that all the buildings use. However, this room
should be lit up red by emergency alarm lights on the ceiling. A convincing alarm noise should be
blaring for the duration of the time that the player is in the room to signify an emergency.

The cause of emergency is due to a lack of reserve oxygen being supplied to the room as a result of a
system failure. The door will be sealed shut as a result of this, trapping the player in this room. This
should be indicated to the player via the information feed bar in their HUD. The message will
indicate that the player’s suit oxygen is dangerously low, with only 35 seconds of suit oxygen left and
that they should find an oxygen supply immediately. The player will be able to hunt around in the
room for some way of regaining oxygen in this room, however there is no way of them regaining
oxygen – it is scripted that their supply depletes. Using a script which updates the remaining time on
screen, the remaining time should count down and then reach 0, indicating that the player has no
oxygen at all.

At this point, the red lights should turn off, leaving the player suffocating in a dark room. 5 seconds
later a green light will abruptly turn on above the door, signifying that the door is seemingly
functioning now. 5 seconds later, an animation should be played which opens the door allowing the
player to quickly escape into the airlock. Therefore, the entire door opening sequence should take
10 seconds.

When the player enters the airlock, by using a trigger, the door should be closed promptly behind
them, restoring oxygen to the player. This will leave the player in the airlock and there should be an
oxygen canister item (which vanishes upon going next to it) on a chest inside the airlock. Indication
that the oxygen can be picked up should be provided via the HUD in the form of a message since the
oxygen timer is no longer needed.

The airlock’s other door will open by playing its animation, allowing the player to enter the main hall
room of the building. The player could explore the small interior of this area, before heading to the
main door and activating it, leading them into another airlock. This airlock will follow the same timed
procedure as the previous airlock before allowing the player to go outdoors into the section of the
island.

In The Open (Exploration)
When the player exits the building, they will discover they are in a small crater-like area with a
narrow pathway in front of them. The pathway will have large blue cliff walls on either side, which
make up the contour of the paths. The player should follow the path forward, until they reach an
obstruction. The player can then turn right, and head up a slope to get around the obstruction.

4

At the top of the slope, the player will be standing at a point where they can look into and across a
large crater below them. Light sticks are positioned around the opposite edge of the crater, leading
up to an entrance at the other side of the crater. The player should head towards these, and climb
up a sloped rock onto a part of the crater that sticks out. Platforms, as such, are positioned around
this edge of the crater to which the player can progressively jump up in order to reach the entrance.

Once they reached this entrance, they must follow the long winding cliff path forward, leading to the
final area of the level.

The Fall (Level Ending)
After navigating through the winding pathway, the player arrives at a more open piece of land,
separated by a large river stretching from left to right. Across the river is a single bridge - and at the
other side a cluster of lights - which the player should be drawn towards. When they get around
halfway across the bridge, their HUD should be abruptly changed and explosives on the bridge will
detonate, dropping the bridge into the water, along with the player.

These explosives should be created as a prefab which uses an explosive particle effect along with a
sound effect for the explosion. A trigger should be placed just before halfway along the bridge which
should trigger the explosions and enable physics on the bridge.

A trigger should be placed on the surface of the water, so that when the player hits the trigger, the
screen fades to black.

Mechanics
Player
Heads-Up Display (HUD)
A customised overlay, created in Photoshop, will be used to give the player a somewhat futuristic
HUD visor which will be used to convincingly display information to the player and to show that the
player is wearing a helmet as part of their suit. The overlay should be a semi-transparent image
which will be applied across the user’s screen via a HUD script component which makes use of the
OnGUI method and stretches the image across the player’s screen with screen.width and
screen.height.

5

An important feature of the HUD should be three information lines, two at the top and one at the
bottom. These should be managed via a HUD script and triggers which makes use of three public
string variables which can be changed via the triggers where required throughout the level. In order
to clear whatever information is displayed, by using the script’s variables, the strings contents should
simply be “”.

The first top string should be used to let the player know their objective, location or information
which is justified as it would later be revealed that the robot character is able to utilise the main
character’s HUD to give them instructions and objectives. This string should be positioned in the top
middle of the screen, and should be relatively small in size since it shouldn’t intrude too much on the
player’s screen space.

The bottom string should be used to let the player known immediate information and warnings.
Again, this is justified since the suit, robot character and buildings can utilise this a way of providing
immediate information to the character. Similar to the top string, it will be centred, but instead it
will be placed down lower on the screen. Since this should be used to attract the player’s attention,
this text should be a lot larger and bolder than the top string since these are only temporary unlike
objectives.

Another string, positioned directly below the top string, should indicate the character’s remaining
oxygen as a percentage. It should be noted that this is ultimately a pseudo representation of the
character’s remaining oxygen. The amount of oxygen will be adjusted throughout the game using
specific triggers which simply change the string at various points in the game. This is to ensure that
the player does not waste time which would completely deplete the remaining oxygen too early on
which would result in the player not being able to advance further in the game. Essentially the
purpose of the oxygen amount is to eventually give the player the objective of finding oxygen later
on in the game.

During the opening scene and at the very end of the level, the player’s screen will be blacked out.
For the intro, this is achieved by drawing a black texture across the whole screen while a certain
condition is met; when the timer is greater than the 35 seconds before when the player should wake
up. For the end scene, this is simply done by changing to a new scene where the camera only
displays black in its skybox settings. For if the game was going to continue directly from the fall, this
would use the same system of drawing black on the screen and removing it after x amount of
seconds, revealing the new location.

Altogether, the HUD, making use of 3D text objects which are parented to the camera and drawing a
visor overlay over the screen, the HUD looks like:

6

Low Gravity & Jumping
Handling the low gravity on the island is a simple procedure. This is achieved by making use of the
First Person Controller prefab which can be acquired by importing Unity’s built-in Asset Package
called “Character Controller”

When the First Person Controller prefab is imported into the world, the prefab comes with the
Character Motor script which handles specific movement features of the First Person Controller. This
script conveniently uses public variables so that the First Person Controller can be tweaked with
ease. In order to produce the low gravity aspect of the planet’s island, the Gravity and Base Height
had to be changed so that the player can jump higher but also fall slower. Additionally, the Max
Forward Speed has been adjusted so that the player doesn’t walk too slowly nor too fast. Changes
indicated by bold.

7

This adds a reasonable change compared to standard first person movement therefore this
mechanic is later used for puzzles and obstacles.

Interaction
As a feature of the game, the player should be able to use certain objects. Traditionally games with
this mechanic often use “E” on the keyboard to interact therefore this should be also used in this
game too since player interaction is an important feature.

This can be achieved using a separate script component on the player which makes use of a raycast
when the player uses the interaction key. Any interactive objects will need to have a script that
confirms whether or not the object can be interacted with and its function.

Unfortunately this is not implemented fully in the created level.

Instead, excessive use of trigger zones is used and function simply by when the player enters an
area.

For example, the oxygen script works using this method:

 void OnTriggerEnter(Collider other)
 {
 if (other.gameObject.tag == "Player")
 {
 GameObject userPlayer = GameObject.Find("First Person Controller");
 HUD hudScript = userPlayer.GetComponent<HUD>();

8

 hudScript.textTop.GetComponent<TextMesh>().text = "...";
 hudScript.textOxygenTop.GetComponent<TextMesh>().text = "[OXYGEN: 82%]";
 hudScript.textBottom.GetComponent<TextMesh>().text = "O2 REFILLED TO 82%";

 Destroy (playerHeartbeatSound.gameObject);
 Destroy (gameObject);
 }

 }

Construction
Terrain
The base terrain of the level makes use of Unity’s built-in terrain editor. The initial terrain – the
terrain in which the player can navigate through should be a new terrain asset with default settings.
Before beginning to edit the terrain, the floor for the intro room should be placed to ensure that the
scale for the level is correct. This is achieved by importing the floor model in the assets, and quickly
laying it out to match the layout plan. By using the layout plan for the level, the terrain should be
based on the following layout sketch:

(The buildings located inside the crater should not be included as part of the final construction.)

The path in which the player will follow should be reasonably flat so that the player can navigate it
with ease. The rounded area in which the intro building is situated in should be reasonably tight, but
allow a little space for when detail assets are introduced. The crater should be the largest open
space of the level and should gradually dip towards the middle.

9

The highlighted part in the image indicates the area which is walkable inside the intro building. Once
the terrain looks like the layout, extra detail can be added to it. This is achieved by painting the
height on the outside of the paths and by creating large and tall mountains to hide areas that the
player shouldn’t immediately see too early on. This applies for the river since the player should not
be able to see the river or the bridge until they actually arrive at it. As a result, a line of mountains is
created on the outside of the path and along the river which blocks it from sight until you reach the
river. The river itself should be done by lowering the height significantly so that a water plane can be
added inside the gap later. To break up the terrain and to make it look more natural, non-rounded
brushes can be applied very lightly (low opacity and strength) around the flat terrain.

When the first terrain (the foreground) is finished, a second terrain (the background) can be
introduced. This is done by creating another new terrain and by adjusting the size in terrain settings
so that the terrain is triple the size of the foreground terrain. The terrain should be manually
repositioned using the transform tool so that the foreground terrain is positioned in the centre of
the background terrain. Once this is done, mountains and rougher landscape should be created
using the paint tool. It is important however that the background terrain does not clip into the
foreground terrain therefore this should be done carefully. The background terrain should, however,
merge slightly with the foreground terrain to avoid any obvious unrealistic gaps.

At an early stage, the terrain eventually looks similar to the following two images:

10

11

Texturing
The texturing for this section of the island’s terrain is somewhat straightforward but involves the use
of Photoshop or a similar package which allows gradient maps to be used. Almost all the terrain
texture assets which are used were taken from a free download of ground textures on the Unity
Asset Store (credited at the end) which were later quickly modified in Photoshop to meet the colour
scheme.

For example, this is the default texture that was downloaded:

12

A gradient map was applied to this image in Photoshop, which essentially converts the image into
greyscale, allowing the user to input where colours should be replaced between the black to white
colours. Shades of blues were used for this texture which changes it from looking like a natural
Earth-like ground to one that is more fitting with the island’s design and colour scheme:

Once the gradient map colours were set, this particular texture looked like the following image. This
procedure was done a few of the other ground textures assets that came with the downloaded pack.
Not all of them were suitable for this particular terrain, therefore only a dry ground, ground and
moss and another ground texture was used in the final textured terrain.

13

One texture was specially created for the island and for this terrain, which was created from scratch
using Allegorithmic’s Substance Designer. The reason for using this tool is that although the colour
change scheme somewhat gives the impression that this world is not Earth, it needed more
unnatural terrain to make it more fitting. As a result, by using Substance Designer, new textures can
be created by utilising and combining various nodes to produce texture outputs. Substance Designer
allows normal maps and PBR compatible maps to be exported, however, due to the limitations of
Unity’s terrain texturing, only the diffuse can be used. If need be, Substance Designer allows
Substance files – which are compatible directly with Unity – to be exported and imported into Unity
where materials and textures can be adjusted in real time inside the Unity editor.

14

In total, four textures were used to paint the terrain. The texture that was created in Substance
Designer was applied as the base material for the terrain. Afterwards, the dry rock texture was
applied around the edges where the rock walls meet the terrain. It is also lightly applied in the crater
to break up the textures through slight blending.

15

In addition to this, the terrain was elevated slightly along the edge of the rocks so that the meet
more nicely.

Overall, through use of the textures on the terrain, it eventually looks like this:

Fog & Skybox
To break off the terrain in the distance, coloured fog is enabled under Render Settings using the
following values:

16

Since this is set during the night, a suitable skybox had to be imported. This was achieved by
importing Unity’s build-in skybox asset pack to which the “MoonShine Skybox” was chosen for this
level.

Detail Objects
To populate the level, detail objects are introduced and used at various points throughout the level.
Some of these can be acquired for free from the Unity Asset Store, however, for particular specific
objects, they have to be modelled manually.

Rocks & Cliffs
The rocks and cliffs models used are potentially one of the most important assets for the
construction of this section of the island. In order to give an impression that this was a more
secluded and remote area of the island, a general mountainous landscape had to be created.
Additionally, these assets also had to fit in with the colour scheme.

The rocks and cliffs used in the scene were downloaded and imported from a free download on the
Unity Asset Store. By default, however, these models were textured with natural colours and
therefore immediately unsuitable for the island. Thankfully, the same technique for changing the
colour of the terrain textures can also be used for this.

The diffuse textures for the particular models that were going to be used were brought into
Photoshop where gradient map was used once again to change the textures blue. This image was
saved and automatically reimported back into Unity where it could be used.

The construction of the pathways and giant overhanging cliff was achieved by reusing a few of the
same models repetitively. These models were copied and pasted many times, then repositioned to
fit the terrain or to create obstructions. In order to make it look more natural and to make it appear
as if the rocks are somewhat unique, many were either rescaled or rotated and overlapped with
other rocks.

17

Eventually, after using many instances of these models throughout, the scene was finally given a
dense rocky environment that broke apart some of the bland areas of terrain.

Obstruction
These rocks are used as walls for the pathway, therefore the player is unable to go outside of the
path. However, since the player is expected to be able to see into the crater but be obstructed,
smaller rocks are used in clusters to create this obstruction. Whilst this may provide an obstruction
that fits with the environment, the player will be able to get over them due to how gravity and
movement works.

As a workaround, an invisible wall must be created at these rocks. This allows the player to climb up
the rocks as much as they can but ultimately prevents them from getting fully through:

18

By creating a new cube object, resizing it and disabling its Mesh Renderer, it acts as an invisible
barrier to the player.

Oxygen Container
The oxygen container is one of the objects that had to be created specifically for this environment.
Since the player has to acquire an oxygen refill of some form, it was vital that there was an object to
represent this. A canister shaped model with specific connectors and top and bottom was created in
Blender and later imported into Allegorithmic’s Substance Painter in order to quickly texture it. Once
the textures and mesh was exported out and imported into Unity, the material was quickly created
by creating a new material that uses the “Diffuse” shader and by placing the diffuse texture in the
respective box:

19

Crates
The crates used in this level are from a free download pack on the Unity Asset Store. This pack
provides around 8 different low-poly crates which can be resized and positioned to appropriately fit
the scene.

Grating
The grating that is used on the walls and on the flooring of the airlock rooms was created by simply
using the downloaded crates pack. This pack comes with a crate which has a grate-like texture. By
bringing in this particular model into the scene, it can be resized to make it long and flat so that it
can be repositioned into the square indents on the flooring and the walls.

Light Poles
The light poles are another asset that was specifically made for this level. These too were created in
Blender and imported into Substance Painter in order to texture it quickly. The diffuse + gloss map
and normal map was exported out this time, and the material later created in Unity makes use of the
“Bumped Specular” shader. The diffuse + gloss map and normal map was assigned to the material in
its respective slot. The material was applied to the imported mesh inside of Unity and rescaled so
that it can be used in the scene.

20

A point light object was parented to each instance of this object and the light was repositioned
towards the top section of the model. The intensity and range of the lights were adjusted per
instance of the object with respect to the area in which they are positioned in. Afterwards, the lens
flare package – which Unity has by default – was imported into the project. The “Small Flare” was
applied to this object.

Communication Towers
The communication / radio towers used in the scene were downloaded from the Unity Asset Store.
When brought into the scene, by default, they have a striped red and white texture. Since this does
not fit with the overall white theme of the buildings and architecture, the texture was simply deleted
in the assets browser. These were introduced into the scene for background detail and to potentially
show that communication was possible between buildings on the island / planet.

21

Bridge
The bridge is the last important detail object of the level, which is used as a mechanic for concluding
the level. The bridge was constructed using long flattened out instances of one of the crates in the
previously mentioned package. This was duplicated several times across the length of the river, and
two tall thin instances were created and placed appropriately. The explosives are to be placed on
these supports so that the middle section of the bridge is dropped into the water. This is achieved by
adding a rigidbody through a script when the player enters a trigger. The addition of the rigidbody
means that the bridge parts are affected by physics and thus fall down along with the player. The
explosives are created by importing the built-in Particles package into Unity. The explosives by
default are disabled, and are later activated using SetActive in the bridge script.

Space Buildings
Structure
The quick layout of the intro building was created to initially preserve scale for the terrain, but also
to give an idea of how the building should be formed. Fast tile floor models were used to create this
layout. Afterwards, it was labelled appropriately:

22

In order to save time and to make it more convenient for the project, custom modular meshes
should be created to form any basic space buildings for the level. These can be created in most 3D
modelling packages. For this example, Blender was used.

The meshes were simply created by building singular walls, inner corners, outer corners, door
frames and flooring by sticking to Blender’s grid and by creating these pieces as separate objects
that were able to fit seamlessly together. To ensure that they did fit together, the editing process
should be repeated almost exactly the same for each piece. For example, if the singular wall was
extruded up by 2 units at the side, then all other parts which connect onto this wall by the side
should also be extruded up 2 units. A similar approach was repeated once again for adding minor
detail to the walls by using the inset function on the ground face and the wall face. Whilst using
inset, the same values were used across all the pieces that had it, and the inset faces were also
extrude inwards by the same amount to ensure consistency.

Afterwards, roof pieces were created which would be placed on top of the walls and corner pieces
so that the player cannot see through the roof at points where they can see the top of the buildings.
Additionally, if the player was required to stand on top of a building, they would be able to do so.
These roof pieces were produced by copying the respective wall piece, flattening it out and adding a
thick border around the outside. The reason for the thick border is to give the building a sense of
robustness and the roundness of these borders helps work towards the space feel of the building.

23

Once the pieces were finished, they were appropriately UV mapped so that they could be textured if
required. However, due to the nature of these particular meshes and their use, a solid material will
suffice later in Unity.

As shown by the meshes in the picture, they are all created to fit the grid. The sizes of each piece are
as follows:

• Single Wall: 1 x 2
• Floor: 1 x 1
• Outer Corner: 2 x 2
• Inner Corner: 2 x 2
• Door Frame: 3 x 2
• Door: 2 x 1 the door’s positioning has been adjusted to fit the door frame

(The top pieces are also the same size of their respective counterpart.)

When the pieces were all acceptably finished, they were repositioned one by one to the origin in
Blender and then exported out individually and named as “sb_” followed by its type. For example,
sb_wall, sb_innercorner, sb_outercorner_top, etc. From there, they were each imported into Unity
into a folder containing all of the space building assets. Since the meshes, by default, are extremely
small, each piece had to have their scale adjusted to 2 in the properties menu.

Once this was done, the meshes could be brought into the level. One important thing to note is that
when the objects are brought into the level, they will not be positioned correctly and thus they will
not be able to snap and fit effectively. In order to fix this, when the object has been brought into the
world, the object’s transform location must be set to a whole number for its x, y and z values. This
allows the objects to fit to Unity’s grid and therefore objects can be moved around and snap to the
grid whilst holding ctrl.

24

Since space walls are traditionally clean and white, these meshes do not need to be textured –
however, they can if the buildings are to be given a more polished and realistic feel. Instead, a new
material can simply be created in Unity.

Very quickly, by using this approach, quick mock-ups of buildings can be created:

Due to the sizes of these pieces, the initial layout was not able to be recreated exactly. Nevertheless,
the general layout and features were still implemented where size allowed.

Interior
Once the building had been formed, work could be focussed on the interior and its lighting since a
good amount of scripted gameplay is implemented in this area.

Sound Effects
To add to the feel of the scene, audio should be introduced into the scene. For the intro scene, a
total of 3 different sound effects are used. Each is an empty game object with an audio source
component attached to it. The three sound objects should be:

• “AlarmSound” with alarm sound clip:
o 3D sound
o Play on Awake
o Loop
o Volume: 0.4

• “PlayerHeartbeat” with the heartbeat sound clip:
o 2D sound
o Play on Awake
o Loop
o Volume: 0.4

• “PlayerBreathing” with the air swoosh sound clip:
o 2D sound

25

o Play on Awake
o Loop
o Volume: 1

These are set up so that they can be either assigned as a GameObject to public variables on a script
or to later destroy them completely.

Intro Scene
Firstly, since the intro room has to be during a time of alarm, two red directional lights were brought
into the room so that they can light up almost the entirety of the room. This was achieved by
rotating each light so they faced opposite walls. They were appropriately named “AlarmLight01” and
“AlarmLight02” for organisation and the light colour was changed to a very dark red. The intensity
was also changed for testing purposes since the intensity would be handled by a script later on
which would create a strobe-like effect.

Afterwards, the red lights were temporarily turned off, and a new green point light was introduced
to the scene which would represent the airlock door opening during this scene. The light was
brought in and positioned in front of the door. This light did not need to be overly bright since the
red lights were scripted to deactivate completely once the timer runs out, sending the room into
complete darkness. The player’s lower text on their HUD should display “NO ATMOSPHERE
DETECTED” Shortly afterwards, the green light will turn on in the dark room. As a result, the green
light sufficiently lights up the door and part of its surroundings, drawing the player towards it as the
airlock door slowly opens. At this point, the alarm sound object is destroyed and the breathing
sound is stopped. The heartbeat sound continues, and the volume is increased to 1.

26

The correct properties and effect of this light are shown in the image below:

When the airlock door is open, the player may enter the airlock where the door behind them will
close quickly behind them thus beginning the airlock transition. (Although the objective is trivial, if
the player fails to enter the airlock after 30 seconds then the level should restart from the
beginning.) The player’s oxygen HUD text will be updated to display to them “AIRLOCK
TRANSITIONING…” and their lower text should now display “ATMOSPHERE DETECTED” during the
transition.

Inside the airlock room will be a set of crates with an oxygen container on top of one of them. A
small blue light should be attached to this object to draw the player towards it. The object will be
destroyed along with the light when the player has entered its trigger zone and the oxygen part of
the HUD should be updated to show that the player now has 82% of reserve oxygen remaining. The
heartbeat sound will also be destroyed.

The second door will slide open, allowing the player to enter the main hall where they can enter the
next open airlock on their right. This airlock will simply close the door behind them, turn on the main
light in the world (which is part of the intro room script) and then open the door, allowing the player
to exit out into the world. The HUD top text will also be changed to display “ENTERING ISLAND
SECTOR A1”

Intro Room Script
The entirety of the intro script is given below:

using UnityEngine;
using System.Collections;

public class Intro_Room : MonoBehaviour {

 public GameObject redLight1;
 public GameObject redLight2;
 public GameObject greenLight;
 public GameObject alarmEmitter;
 public GameObject playerHeartbeat;
 public GameObject playerBreathing;
 public GameObject airlockDoor;
 public float introTimer = 45;

27

 bool doorOpen = false;
 public bool playerAwake = false;

 // Use this for initialization
 void Start () {

 }

 // Update is called once per frame
 void Update () {

 // For the first 35 seconds after the player is awake, countdown based on introTimer - 10.
 if (introTimer <= 45 && introTimer >= 10)
 {
 GameObject userPlayer = GameObject.Find("First Person Controller");
 HUD hudScript = userPlayer.GetComponent<HUD>();

 hudScript.textBottom.GetComponent<TextMesh>().text = "O2 TIME REMAINING: " +
Mathf.Floor (introTimer - 10) + " SECS";

 playerAwake = true;

 }

 // When the player's countdown has ran out, adjust HUD text and turn off red lights.
 if (introTimer <= 10 && introTimer >= 9)
 {
 GameObject userPlayer = GameObject.Find("First Person Controller");
 HUD hudScript = userPlayer.GetComponent<HUD>();

 hudScript.textTop.GetComponent<TextMesh>().text = "...";
 hudScript.textOxygenTop.GetComponent<TextMesh>().text = "[OXYGEN: DEPLETED]";
 hudScript.textBottom.GetComponent<TextMesh>().text = "NO ATMOSPHERE DETECTED";

 redLight1.SetActive (false);
 redLight2.SetActive (false);

 /// Remove alarm, silence breathing and increase heartbeat volume.
 Destroy(alarmEmitter.gameObject);
 playerBreathing.audio.Stop();
 playerHeartbeat.audio.volume = 1.0f;

 }

 // Five seconds later, adjust HUD text and turn on green light.
 if (introTimer <= 5 && introTimer >= 4)
 {
 GameObject userPlayer = GameObject.Find("First Person Controller");
 HUD hudScript = userPlayer.GetComponent<HUD>();

 hudScript.textTop.GetComponent<TextMesh>().text = "OVERRIDING DOOR";

 greenLight.SetActive (true);

 }

 // When the timer is done, begin opening the door.
 if (introTimer <= 0)
 {
 if (doorOpen == false)
 {
 if (airlockDoor.transform.position.y >= -3.2)
 {

28

 airlockDoor.transform.Translate (Vector3.down * 0.02f, Space.World);
 }
 else
 {
 doorOpen = true;
 }
 }
 }
 else
 {
 // Deduct the time from the intro timer based on delta time.
 introTimer -= Time.deltaTime;

 // Adjust the intensity of the red lights based on time for a strobe effect.
 redLight1.gameObject.light.intensity = 8 * (Time.time - Mathf.Floor(Time.time));
 redLight2.gameObject.light.intensity = 8 * (Time.time - Mathf.Floor(Time.time));
 }

 }
}

HUD Change Script
Although this particular script is used for separate trigger zones where the player’s HUD should be
changed, essentially the HUD change is achieved overall through the following:

using UnityEngine;
using System.Collections;

public class HUDTextChange : MonoBehaviour {

 public string topText;
 public string oxygenText;
 public string bottomText;
 public bool shouldChangeTop;
 public bool shouldChangeOxygen;
 public bool shouldChangeBottom;
 bool playerEntered = false;

 // Use this for initialization
 void Start () {

 }

 // Update is called once per frame
 void Update () {

 }

 void OnTriggerEnter(Collider other)
 {
 if (playerEntered == false)
 {
 if (other.gameObject.tag == "Player")
 {
 GameObject userPlayer = GameObject.Find ("First Person Controller");
 HUD hudScript = userPlayer.GetComponent<HUD> ();

 if (shouldChangeTop == true)
 {
 hudScript.textTop.GetComponent<TextMesh> ().text = topText;
 }

29

 if (shouldChangeOxygen == true)
 {
 hudScript.textOxygenTop.GetComponent<TextMesh> ().text =
oxygenText;

 }

 if (shouldChangeBottom == true)
 {
 hudScript.textBottom.GetComponent<TextMesh> ().text = bottomText;
 }

 playerEntered = true;

 }
 }

 }
}

Acknowledgements
The following is a list of resources made by others which were used for this project. Their name /
alias and source URL is given where possible:

Models:

• “Radar Tower” – by Unity Technologies
o https://www.assetstore.unity3d.com/en/#!/content/821

• “Metal Crates Pack” – by Eldanu Games Studio
o https://www.assetstore.unity3d.com/en/#!/content/8836

• “Ground Textures Pack” – by Nobiax / Yughues
o https://www.assetstore.unity3d.com/en/#!/content/13001

• “Free Rocks” – by TripleBrick
o https://www.assetstore.unity3d.com/en/#!/content/19288

Audio:

• “01586 air swoosh.wav” – by Robinhood76
o http://www.freesound.org/people/Robinhood76/sounds/94841/

• “Single Heartbeat Clean HQ_BeatSmith.wav” – by Lunardrive
o http://www.freesound.org/people/Lunardrive/sounds/22440/

• “alarm_fatal.wav” – by sirplus
o http://www.freesound.org/people/sirplus/sounds/25031/

Applications:

• Unity Version 4.5.5f1
• Adobe Photoshop CC (2014)
• Blender 2.72
• Substance Painter 1.0.2
• Substance Designer 4.5

https://www.assetstore.unity3d.com/en/%23!/content/821
https://www.assetstore.unity3d.com/en/%23!/content/8836
https://www.assetstore.unity3d.com/en/%23!/content/13001
https://www.assetstore.unity3d.com/en/%23!/content/19288
http://www.freesound.org/people/Robinhood76/sounds/94841/
http://www.freesound.org/people/Lunardrive/sounds/22440/
http://www.freesound.org/people/sirplus/sounds/25031/

	Synopsis
	Gameplay and Story
	Wake Up Call (Intro Scene)
	Sleep Pod Room

	In The Open (Exploration)
	The Fall (Level Ending)

	Mechanics
	Player
	Heads-Up Display (HUD)
	Low Gravity & Jumping
	Interaction

	Construction
	Terrain
	Texturing
	Fog & Skybox

	Detail Objects
	Rocks & Cliffs
	Obstruction

	Oxygen Container
	Crates
	Grating
	Light Poles
	Communication Towers
	Bridge

	Space Buildings
	Structure
	Interior
	Sound Effects
	Intro Scene
	Intro Room Script
	HUD Change Script

	Acknowledgements

